Dimensionality Reduction by Canonical Contextual Correlation Projections
نویسندگان
چکیده
A linear, discriminative, supervised technique for reducing feature vectors extracted from image data to a lower-dimensional representation is proposed. It is derived from classical Fisher linear discriminant analysis (LDA) and useful, for example, in supervised segmentation tasks in which high-dimensional feature vector describes the local structure of the image. In general, the main idea of the technique is applicable in discriminative and statistical modelling that involves contextual data. LDA is a basic, well-known and useful technique in many applications. Our contribution is that we extend the use of LDA to cases where there is dependency between the output variables, i.e., the class labels, and not only between the input variables. The latter can be dealt with in standard LDA. The principal idea is that where standard LDA merely takes into account a single class label for every feature vector, the new technique incorporates class labels of its neighborhood in its analysis as well. In this way, the spatial class label configuration in the vicinity of every feature vector is accounted for, resulting in a technique suitable for e.g. image data. This spatial LDA is derived from a formulation of standard LDA in terms of canonical correlation analysis. The linearly dimension reduction transformation thus obtained is called the canonical contextual correlation projection. An additional drawback of LDA is that it cannot extract more features than the number of classes minus one. In the two-class case this means that only a reduction to one dimension is possible. Our contextual LDA approach can avoid such extreme deterioration of the classification space and retain more than one dimension. The technique is exemplified on a pixel-based segmentation problem. An illustrative experiment on a medical image segmentation task shows the performance improvements possible employing the canonical contextual correlation projection.
منابع مشابه
Dimensionality reduction of image features using the canonical contextual correlation projection
A linear, discriminative, supervised technique for reducing feature vectors extracted from image data to a lower-dimensional representation is proposed. It is derived from classical linear discriminant analysis (LDA), extending this technique to cases where there is dependency between the output variables, i.e., the class labels, and not only between the input variables. (The latter can readily...
متن کاملMulti-Label Prediction via Sparse Infinite CCA
Canonical Correlation Analysis (CCA) is a useful technique for modeling dependencies between two (or more) sets of variables. Building upon the recently suggested probabilistic interpretation of CCA, we propose a nonparametric, fully Bayesian framework that can automatically select the number of correlation components, and effectively capture the sparsity underlying the projections. In addition...
متن کاملMethods of Canonical Analysis for Functional Data
We consider estimates for functional canonical correlations and canonical weight functions. Four computational methods for the estimation of functional canonical correlation and canonical weight functions are proposed and compared, including one which is a slight variation of the spline method proposed by Leurgans, Moyeed and Silverman (1993). We propose dimension reduction and dimension augmen...
متن کاملVisualizing Web Images Using Fisher Discriminant Locality Preserving Canonical Correlation Analysis
A novel dimensionality reduction method, Fisher Discriminant Locality Preserving Canonical Correlation Analysis (FDLPCCA), for visualizing Web images is presented in this paper. FDLP-CCA can integrate two modalities and discriminate target items in terms of their semantics by considering unique characteristics of the two modalities. In this paper, we focus on Web images with text uploaded on So...
متن کاملEfficient Dimensionality Reduction for Canonical Correlation Analysis
We present a fast algorithm for approximate canonical correlation analysis (CCA). Given a pair of tall-and-thin matrices, the proposed algorithm first employs a randomized dimensionality reduction transform to reduce the size of the input matrices, and then applies any CCA algorithm to the new pair of matrices. The algorithm computes an approximate CCA to the original pair of matrices with prov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004